Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.588
1.
PLoS One ; 19(5): e0302829, 2024.
Article En | MEDLINE | ID: mdl-38728342

Restless Legs Syndrome (RLS) is a common sleep disorder characterized by an urge to move the legs that is responsive to movement (particularly during rest), periodic leg movements during sleep, and hyperarousal. Recent evidence suggests that the involvement of the adenosine system may establish a connection between dopamine and glutamate dysfunction in RLS. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological technique widely applied to explore brain electrophysiology and neurochemistry under different experimental conditions. In this pilot study protocol, we aim to investigate the effects of dipyridamole (a well-known enhancer of adenosinergic transmission) and caffeine (an adenosine receptor antagonist) on measures of cortical excitation and inhibition in response to TMS in patients with primary RLS. Initially, we will assess cortical excitability using both single- and paired-pulse TMS in patients with RLS. Then, based on the measures obtained, we will explore the effects of dipyridamole and caffeine, in comparison to placebo, on various TMS parameters related to cortical excitation and inhibition. Finally, we will evaluate the psycho-cognitive performance of RLS patients to screen them for cognitive impairment and/or mood-behavioral dysfunction, thus aiming to correlate psycho-cognitive findings with TMS data. Overall, this study protocol will be the first to shed lights on the neurophysiological mechanisms of RLS involving the modulation of the adenosine system, thus potentially providing a foundation for innovative "pharmaco-TMS"-based treatments. The distinctive TMS profile observed in RLS holds indeed the potential utility for both diagnosis and treatment, as well as for patient monitoring. As such, it can be considered a target for both novel pharmacological (i.e., drug) and non-pharmacological (e.g., neuromodulatory), "TMS-guided", interventions.


Caffeine , Dipyridamole , Restless Legs Syndrome , Transcranial Magnetic Stimulation , Humans , Restless Legs Syndrome/drug therapy , Restless Legs Syndrome/physiopathology , Transcranial Magnetic Stimulation/methods , Caffeine/pharmacology , Caffeine/therapeutic use , Pilot Projects , Dipyridamole/pharmacology , Dipyridamole/therapeutic use , Male , Adenosine/metabolism , Adult , Female , Purinergic P1 Receptor Antagonists/therapeutic use , Purinergic P1 Receptor Antagonists/pharmacology , Middle Aged , Proof of Concept Study
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731870

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Alzheimer Disease , Amyloid beta-Peptides , Microglia , Plaque, Amyloid , Animals , Microglia/metabolism , Mice , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Transcranial Magnetic Stimulation/methods , Acoustic Stimulation , Mice, Transgenic , Disease Models, Animal , Synapses/metabolism , Hippocampus/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neuronal Plasticity , Long-Term Potentiation , Signal Transduction
3.
Braz J Med Biol Res ; 57: e13389, 2024.
Article En | MEDLINE | ID: mdl-38716983

During the COVID-19 outbreak, there was a sharp increase in generalized anxiety disorder (GAD). Acupuncture therapy has the advantages of accurate clinical efficacy, safety and reliability, few adverse reactions, and no dependence, and is gradually becoming one of the emerging therapies for treating GAD. We present a study protocol for a randomized clinical trial with the aim of exploring the mechanism of brain plasticity in patients with GAD and evaluate the effectiveness and reliability of acupuncture treatment. Transcranial magnetic stimulation (TMS) will be used to assess cortical excitability in GAD patients and healthy people. Sixty-six GAD patients meeting the inclusion criteria will be randomly divided into two groups: TA group, (treatment with acupuncture and basic western medicine treatment) and SA group (sham acupuncture and basic western medicine treatment). Twenty healthy people will be recruited as the control group (HC). The parameters that will be evaluated are amplitude of motor evoked potentials (MEPs), cortical resting period (CSP), resting motor threshold (RMT), and Hamilton Anxiety Scale (HAMA) score. Secondary results will include blood analysis of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), serotonin (5-HT), and brain-derived nerve growth factor (BDNF). Outcomes will be assessed at baseline and after the intervention (week 8). This study protocol is the first clinical trial designed to detect differences in cerebral cortical excitability between healthy subjects and patients with GAD, and the comparison of clinical efficacy and reliability before and after acupuncture intervention is also one of the main contents of the protocol. We hope to find a suitable non-pharmacological alternative treatment for patients with GAD.


Acupuncture Therapy , Anxiety Disorders , COVID-19 , Transcranial Magnetic Stimulation , Humans , Acupuncture Therapy/methods , Anxiety Disorders/therapy , Transcranial Magnetic Stimulation/methods , COVID-19/therapy , Adult , Male , Female , Evoked Potentials, Motor/physiology , Randomized Controlled Trials as Topic , Treatment Outcome , Reproducibility of Results , SARS-CoV-2 , Middle Aged , Young Adult
4.
Harv Rev Psychiatry ; 32(3): 77-95, 2024.
Article En | MEDLINE | ID: mdl-38728568

LEARNING OBJECTIVES: After participating in this CME activity, the psychiatrist should be better able to:• Compare and contrast therapies used in combination with transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for treating MDD. BACKGROUND: Noninvasive neuromodulation, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has emerged as a major area for treating major depressive disorder (MDD). This review has two primary aims: (1) to review the current literature on combining TMS and tDCS with other therapies, such as psychotherapy and psychopharmacological interventions, and (2) to discuss the efficacy, feasibility, limitations, and future directions of these combined treatments for MDD. METHOD: This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched three databases: PubMed, PsycInfo, and Cochrane Library. The last search date was December 5, 2023. RESULTS: The initial search revealed 2,519 records. After screening and full-text review, 58 studies (7 TMS plus psychotherapy, 32 TMS plus medication, 7 tDCS plus psychotherapy, 12 tDCS plus medication) were included. CONCLUSIONS: The current literature on tDCS and TMS paired with psychotherapy provides initial support for integrating mindfulness interventions with both TMS and tDCS. Adding TMS or tDCS to stable doses of ongoing medications can decrease MDD symptoms; however, benzodiazepines may interfere with TMS and tDCS response, and antipsychotics can interfere with TMS response. Pairing citalopram with TMS and sertraline with tDCS can lead to greater MDD symptom reduction compared to using these medications alone. Future studies need to enroll larger samples, include randomized controlled study designs, create more uniform protocols for combined treatment delivery, and explore mechanisms and predictors of change.


Depressive Disorder, Major , Psychotherapy , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Depressive Disorder, Major/therapy , Transcranial Direct Current Stimulation/methods , Combined Modality Therapy , Psychotherapy/methods , Antidepressive Agents/therapeutic use
5.
PLoS One ; 19(5): e0302375, 2024.
Article En | MEDLINE | ID: mdl-38701103

There are numerous reports of enhanced or emerged visual arts abilities in patients with semantic impairment. These reports led to the theory that a loss of function on the language side of the brain can result in changes of ability to draw and/or to paint. Further, the left posterior middle temporal gyrus (l-pMTG) has been revealed to contribute to the higher control semantic mechanisms with objects recognition and integration of visual information, within a widely distributed network of the left hemisphere. Nevertheless, the theory has not been fully studied in neural bases. The aim of this study is to examine role of the l-pMTG on shape recognition and its reconstruction within drawing behavior, by using a combining method of the repetitive transcranial magnetic stimulation (rTMS) and functional near-infrared spectroscopy (fNIRS). Eighteen healthy participants received a low frequency inhibitory rTMS to their l-pMTG during the drawing task of the Benton Visual Retention Test (BVRT). There was a significant decrease of the mean accuracy of reproductions in the Complex designs of the BVRT, compared to the Simple and Medium designs. The fNIRS data showed strong negative correlations with the results of the BVRT. Though our hypothesis had a contradiction that rTMS would have inhibited the brain activity in the stimulated site, the results suggest that shape recognition and its reconstruction such as the BVRT require neural activations of the l-TL as well as that of the l-pMTG.


Spectroscopy, Near-Infrared , Temporal Lobe , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Male , Female , Adult , Young Adult , Pattern Recognition, Visual/physiology , Brain Mapping/methods
6.
CNS Neurosci Ther ; 30(5): e14757, 2024 May.
Article En | MEDLINE | ID: mdl-38747078

BACKGROUND: With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS: This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS: Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS: Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.


Consciousness Disorders , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Vagus Nerve Stimulation , Humans , Consciousness Disorders/therapy , Transcranial Magnetic Stimulation/methods , Transcranial Magnetic Stimulation/trends , Transcranial Direct Current Stimulation/methods , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/trends , Transcutaneous Electric Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/trends
7.
Clin Neuropharmacol ; 47(3): 101-103, 2024.
Article En | MEDLINE | ID: mdl-38743604

OBJECTIVES: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive form of brain stimulation that uses magnetic pulses to stimulate specific brain regions. Retina is being investigated whether the retina, which is also known as the brain's window to the outside world, is affected by the treatment. METHODS: Magventure X100 device was used for the procedure. The bilateral supplementary motor area was targeted. Procedure protocol: power: 47%, repetitive rate (frequency): 1 Hz, pulses in train duration: 300, intertrain interval (waiting time): 120 seconds, number of trains: 4, total pulses: 1200. Twenty sessions of rTMS were planned for the patient. The patient was informed about the procedure, and her consent was obtained. RESULTS: The Yale-Brown Obsessive-Compulsive Disorder Scale (YBOCS) score before the first session was 31, and the Brown Assessment Beliefs Scale (BABS) score was 5. The patient's YBOCS score after the 15th session was 14, and the BABS score was 0. After the implementation of the 15th session of the patient's treatment, retinal detachment developed in the right eye, and the treatment was terminated. As a result of the eye examination of the patient, it was determined that there was 1 horseshoe rupture and 2 hole-shaped ruptures in the lower half of the left eye. CONCLUSIONS: Patients at risk for retinal detachment may require specialized treatment and close monitoring to prevent the condition from worsening. It is important to consult with an ophthalmologist for patients at risk for retinal detachment before TMS application.


Obsessive-Compulsive Disorder , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods , Female , Obsessive-Compulsive Disorder/therapy , Adult
8.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Article En | MEDLINE | ID: mdl-38729664

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Depressive Disorder, Major , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Rest , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Connectome , Treatment Outcome , Brain/physiopathology , Brain/diagnostic imaging
9.
Article En | MEDLINE | ID: mdl-38691431

In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.


Acoustic Stimulation , Hippocampus , Mice, Inbred C57BL , Transcranial Magnetic Stimulation , Animals , Mice , Transcranial Magnetic Stimulation/methods , Male , Hippocampus/physiology , Neuronal Plasticity/physiology , Cognition/physiology , Long-Term Potentiation/physiology , Ultrasonic Waves , Theta Rhythm/physiology
10.
Sci Rep ; 14(1): 10194, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702398

Paired associative stimulation (PAS) consisting of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (known as high-PAS) induces plastic changes and improves motor performance in patients with incomplete spinal cord injury (SCI). Listening to music during PAS may potentially improve mood and arousal and facilitate PAS-induced neuroplasticity via auditory-motor coupling, but the effects have not been explored. This pilot study aimed to determine if the effect of high-PAS on motor-evoked potentials (MEPs) and subjective alertness can be augmented with music. Ten healthy subjects and nine SCI patients received three high-PAS sessions in randomized order (PAS only, PAS with music synchronized to TMS, PAS with self-selected music). MEPs were measured before (PRE), after (POST), 30 min (POST30), and 60 min (POST60) after stimulation. Alertness was evaluated with a questionnaire. In healthy subjects, MEPs increased at POST in all sessions and remained higher at POST60 in PAS with synchronized music compared with the other sessions. There was no difference in alertness. In SCI patients, MEPs increased at POST and POST30 in PAS only but not in other sessions, whereas alertness was higher in PAS with self-selected music. More research is needed to determine the potential clinical effects of using music during high-PAS.


Evoked Potentials, Motor , Spinal Cord Injuries , Transcranial Magnetic Stimulation , Humans , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Male , Female , Adult , Transcranial Magnetic Stimulation/methods , Middle Aged , Evoked Potentials, Motor/physiology , Pilot Projects , Music , Healthy Volunteers , Arousal/physiology , Music Therapy/methods
11.
JAMA Netw Open ; 7(5): e249220, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709534

Importance: Repetitive transcranial magnetic stimulation (rTMS) has emerged as a safe and promising intervention for Alzheimer disease (AD). Objective: To investigate the effect of a 4-week personalized hippocampal network-targeted rTMS on cognitive and functional performance, as well as functional connectivity in AD. Design, Setting, and Participants: This randomized clinical trial, which was sham-controlled and masked to participants and evaluators, was conducted between May 2020 and April 2022 at a single Korean memory clinic. Eligible participants were between ages 55 and 90 years and had confirmed early AD with evidence of an amyloid biomarker. Participants who met the inclusion criteria were randomly assigned to receive hippocampal network-targeted rTMS or sham stimulation. Participants received 4-week rTMS treatment, with assessment conducted at weeks 4 and 8. Data were analyzed between April 2022 and January 2024. Interventions: Each patient received 20 sessions of personalized rTMS targeting the left parietal area, functionally connected to the hippocampus, based on fMRI connectivity analysis over 4 weeks. The sham group underwent the same procedure, excluding actual magnetic stimulation. A personalized 3-dimensional printed frame to fix the TMS coil to the optimal target site was produced. Main Outcomes and Measures: The primary outcome was the change in the AD Assessment Scale-Cognitive Subscale test (ADAS-Cog) after 8 weeks from baseline. Secondary outcomes included changes in the Clinical Dementia Rating-Sum of Boxes (CDR-SOB) and Seoul-Instrumental Activity Daily Living (S-IADL) scales, as well as resting-state fMRI connectivity between the hippocampus and cortical areas. Results: Among 30 participants (18 in the rTMS group; 12 in the sham group) who completed the 8-week trial, the mean (SD) age was 69.8 (9.1) years; 18 (60%) were female. As the primary outcome, the change in ADAS-Cog at the eighth week was significantly different between the rTMS and sham groups (coefficient [SE], -5.2 [1.6]; P = .002). The change in CDR-SOB (-4.5 [1.4]; P = .007) and S-IADL (1.7 [0.7]; P = .004) were significantly different between the groups favoring rTMS groups. The fMRI connectivity analysis revealed that rTMS increased the functional connectivity between the hippocampus and precuneus, with its changes associated with improvements in ADAS-Cog (r = -0.57; P = .005). Conclusions and Relevance: This randomized clinical trial demonstrated the positive effects of rTMS on cognitive and functional performance, and the plastic changes in the hippocampal-cortical network. Our results support the consideration of rTMS as a potential treatment for AD. Trial Registration: ClinicalTrials.gov Identifier: NCT04260724.


Alzheimer Disease , Hippocampus , Transcranial Magnetic Stimulation , Humans , Alzheimer Disease/therapy , Alzheimer Disease/physiopathology , Female , Male , Aged , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Transcranial Magnetic Stimulation/methods , Middle Aged , Magnetic Resonance Imaging/methods , Aged, 80 and over , Treatment Outcome
13.
PLoS One ; 19(5): e0302660, 2024.
Article En | MEDLINE | ID: mdl-38709724

The Stroop task is a well-established tool to investigate the influence of competing visual categories on decision making. Neuroimaging as well as rTMS studies have demonstrated the involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given its reliability, the numerical Stroop task was used to compare the effects of different TMS targeting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the superiority of individualized fMRI targeting. We performed the present study to test whether fMRI-guided rTMS effects on numerical Stroop task performance could still be observed while using more advanced techniques that have emerged in the last decade (e.g., electrical sham, robotic coil holder system, etc.). To do so we used a traditional reaction time analysis and we performed, post-hoc, a more advanced comprehensive drift diffusion modeling approach. Fifteen participants performed the numerical Stroop task while active or sham 10 Hz rTMS was applied over the region of the right intraparietal sulcus (IPS) showing the strongest functional activation in the Incongruent > Congruent contrast. This target was determined based on individualized fMRI data collected during a separate session. Contrary to our assumption, the classical reaction time analysis did not show any superiority of active rTMS over sham, probably due to confounds such as potential cumulative rTMS effects, and the effect of practice. However, the modeling approach revealed a robust effect of rTMS on the drift rate variable, suggesting differential processing of congruent and incongruent properties in perceptual decision-making, and more generally, illustrating that more advanced computational analysis of performance can elucidate the effects of rTMS on the brain where simpler methods may not.


Magnetic Resonance Imaging , Reaction Time , Stroop Test , Transcranial Magnetic Stimulation , Humans , Magnetic Resonance Imaging/methods , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Reaction Time/physiology , Young Adult , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Decision Making/physiology , Brain Mapping/methods
14.
Neurol India ; 72(2): 248-257, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38691468

Infantile central palsy (CP) is caused due to damage to the immature developing brain usually before birth, leading to altered topography and biochemical milieu. CP is a life-limiting disorder, which causes changes in sensory, motor, cognitive, and behavioral functioning. Understanding its pathophysiology is complex, and current therapeutic modalities, oral medication, surgical treatment, physical therapy, and rehabilitation provide minimal relief. As the brain is plastic, it has an inherent capacity to adapt to altered activity; thus, non-invasive brain stimulation (NIBS) strategies, like repetitive transcranial magnetic stimulation, which can modulate the neuronal activity and its function, may lead to recovery in CP patients. Further, in recent years, nanomedicine has shown a promising approach in pre-clinical studies for the treatment of central nervous system disorder because it can cross the blood-brain barrier, improve penetration, and provide sustained release of the drug. The review focuses on the principles and mechanisms of various NIBS techniques used in CP. We have also contemplated the effect of rehabilitation and nanomedicine in CP children, which will definitely lead to advancing our diagnostic as well as therapeutic abilities, in a vulnerable group of little ones.


Cerebral Palsy , Nanomedicine , Transcranial Magnetic Stimulation , Humans , Cerebral Palsy/therapy , Nanomedicine/methods , Transcranial Magnetic Stimulation/methods , Child , Brain/physiopathology
15.
Cereb Cortex ; 34(13): 8-18, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696602

Noninvasive brain stimulation (NIBS) has been increasingly investigated during the last decade as a treatment option for persons with autism spectrum disorder (ASD). Yet, previous studies did not reach a consensus on a superior treatment protocol or stimulation target. Persons with ASD often suffer from social isolation and high rates of unemployment, arising from difficulties in social interaction. ASD involves multiple neural systems involved in perception, language, and cognition, and the underlying brain networks of these functional domains have been well documented. Aiming to provide an overview of NIBS effects when targeting these neural systems in late adolescent and adult ASD, we conducted a systematic search of the literature starting at 631 non-duplicate publications, leading to six studies corresponding with inclusion and exclusion criteria. We discuss these studies regarding their treatment rationale and the accordingly chosen methodological setup. The results of these studies vary, while methodological advances may allow to explain some of the variability. Based on these insights, we discuss strategies for future clinical trials to personalize the selection of brain stimulation targets taking into account intersubject variability of brain anatomy as well as function.


Brain , Humans , Adult , Autism Spectrum Disorder/therapy , Precision Medicine/methods , Precision Medicine/trends , Transcranial Magnetic Stimulation/methods , Autistic Disorder/therapy , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Transcranial Direct Current Stimulation/methods
16.
Drug Alcohol Depend ; 258: 111278, 2024 May 01.
Article En | MEDLINE | ID: mdl-38579605

OBJECTIVE: This study aimed to evaluate the clinical efficacy and safety of administering intermittent theta burst stimulation (iTBS) to the medial prefrontal cortex for tobacco use disorder. METHODS: A randomized sham-controlled trial was conducted, with 38 participants receiving 28 sessions of active (n=25) or sham (n=13) iTBS (2 sessions/day, 600 pulses/session, 110% resting motor threshold, AFz target) along with smoking cessation education (Forever Free © booklets) over 14 visits. Primary outcomes included self-reported cigarette consumption and abstinence, verified by urinary cotinine tests. Secondary outcomes included symptoms of tobacco use disorder, negative mood, and safety/tolerability. RESULTS: Both active and sham groups reported reduced cigarette consumption (ß = -0.12, p = 0.015), cigarette craving (ß = -0.16, p = 0.002), and tobacco withdrawal symptoms (ß = -0.05, p < 0.001). However, there were no significant time x group interaction effects for any measure. Similarly, the two groups had no significant differences in urinary cotinine-verified abstinence. Adverse events occurred with similar frequency in both groups. CONCLUSION: There were no differences in cigarette consumption between the active and sham iTBS groups, both groups decreased cigarette consumption similarly. Further research is needed to compare iTBS to standard high-frequency rTMS and explore the potential differences in efficacy. Despite limitations, this study contributes to experimental design considerations for TMS as a novel intervention for tobacco and other substance use disorders, emphasizing the need for a more comprehensive understanding of the stimulation parameters and target sites.


Prefrontal Cortex , Tobacco Use Disorder , Transcranial Magnetic Stimulation , Humans , Male , Female , Adult , Transcranial Magnetic Stimulation/methods , Tobacco Use Disorder/therapy , Middle Aged , Treatment Outcome , Smoking Cessation/methods , Theta Rhythm/physiology , Substance Withdrawal Syndrome , Craving/physiology , Cotinine/urine , Young Adult
17.
Aging (Albany NY) ; 16(8): 7119-7130, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38643463

BACKGROUND: Non-invasive brain stimulation is considered as a promising technology for treating patients with disorders of consciousness (DOC). Various approaches and protocols have been proposed; however, few of them have shown potential effects on patients with vegetative state (VS). This study aimed to explore the neuro-modulation effects of intermittent theta burst stimulation (iTBS) on the brains of patients with VS and to provide a pilot investigation into its possible role in treating such patients. METHODS: We conducted a sham-controlled crossover study, a real and a sham session of iTBS were delivered over the left dorsolateral prefrontal cortex of such patients. A measurement of an electroencephalography (EEG) and a behavioral assessment of the Coma Recovery Scale-Revised (CRS-R) were applied to evaluate the modulation effects of iTBS before and after stimulation. RESULTS: No meaningful changes of CRS-R were found. The iTBS altered the spectrum, complexity and functional connectivity of the patients. The real stimulation induced a trend of decreasing of delta power at T1 and T2 in the frontal region, significant increasing of permutation entropy at the T2 in the left frontal region. In addition, brain functional connectivity, particularly inter-hemispheric connectivity, was strengthened between the electrodes of the frontal region. The sham stimulation, however, did not induce any significant changes of the brain activity. CONCLUSIONS: One session of iTBS significantly altered the oscillation power, complexity and functional connectivity of brain activity of VS patients. It may be a valuable tool on modulating the brain activities of patients with VS.


Cross-Over Studies , Electroencephalography , Persistent Vegetative State , Transcranial Magnetic Stimulation , Humans , Persistent Vegetative State/physiopathology , Persistent Vegetative State/therapy , Male , Female , Middle Aged , Transcranial Magnetic Stimulation/methods , Adult , Theta Rhythm/physiology , Brain/physiopathology , Aged
18.
Sci Rep ; 14(1): 8475, 2024 04 11.
Article En | MEDLINE | ID: mdl-38605084

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Motor Cortex , Vibration , Electromyography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation/methods , Neural Inhibition/physiology
19.
J Affect Disord ; 356: 639-646, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38657770

OBJECTIVE: To evaluate the cost-effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an adjunct to standard care from an Australian health sector perspective, compared to standard care alone for adults with treatment-resistant bipolar depression (TRBD). METHODS: An economic model was developed to estimate the cost per disability-adjusted life-year (DALY) averted and quality-adjusted life-year (QALY) gained for rTMS added to standard care compared to standard care alone, for adults with TRBD. The model simulated the time in three health states (mania, depression, residual) over one year. Response to rTMS was sourced from a meta-analysis, converted to a relative risk and used to modify the time in the depressed state. Uncertainty and sensitivity tested the robustness of results. RESULTS: Base-case incremental cost-effectiveness ratios (ICERs) were $72,299 per DALY averted (95 % Uncertainty Interval (UI): $60,915 to $86,668) and $46,623 per QALY gained (95 % UI: $39,676 - $55,161). At a willingness to pay (WTP) threshold of $96,000 per DALY averted, the base-case had a 100 % probability of being marginally cost-effective. At a WTP threshold of $64,000 per QALY gained, the base-case had a 100 % probability of being cost-effective. Sensitivity analyses decreasing the number of sessions provided, increasing the disability weight or the time spent in the depression state for standard care improved the ICERs for rTMS. CONCLUSIONS: Dependent on the outcome measure utilised and assumptions, rTMS would be considered a very cost-effective or marginally cost-effective adjunct to standard care for TRBD compared to standard care alone.


Bipolar Disorder , Cost-Benefit Analysis , Depressive Disorder, Treatment-Resistant , Quality-Adjusted Life Years , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/economics , Transcranial Magnetic Stimulation/methods , Bipolar Disorder/therapy , Bipolar Disorder/economics , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/economics , Australia , Adult , Models, Economic , Combined Modality Therapy , Female
20.
J Physiol ; 602(10): 2253-2264, 2024 May.
Article En | MEDLINE | ID: mdl-38638084

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Carbidopa , Evoked Potentials, Motor , Levodopa , Transcranial Magnetic Stimulation , Humans , Male , Levodopa/pharmacology , Adult , Evoked Potentials, Motor/drug effects , Transcranial Magnetic Stimulation/methods , Carbidopa/pharmacology , Young Adult , Neural Inhibition/drug effects , Double-Blind Method , Dopamine Agents/pharmacology , Dopamine/pharmacology , Drug Combinations , Median Nerve/physiology , Median Nerve/drug effects
...